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INTRODUCTION 

Various authors [l-6] have applied the heat balance 
integral method to one-dimensional conduction problems, 
but in every case the applications have been limited to 
uniform initial temperature conditions. The only re- 
ference to non-uniform conditions is contained in a 
suggestion by Yang [A, who proposed the introduction 
of a new temperature excess variable 0+. 

If, for instance, in the original differential equation 
applicable to a slab 0 Q x < L 

ae a aze 
at ~2 a+ (1) 

with initial conditions B(v, 0) = f(n) and suitable bound- 
ary conditions, the excess temperature 0+ = e(?, t) 
- 0(7,0) is introduced, the differential equation becomes 

as+ _=_ = 8E++!Cf) 
( at L2 312 

(2) 

Here 0 is temperature, a the thermal diffusivity, t is time, 
L the slab thickness and 7 = x/L. f(v) is assumed to be a 
specified function. Although Yang’s suggestion works in 
a few simple cases, it suffers from three disadvantages. 
First, the addition of (a/L2)(d2f/dv2) generally complicates 
the basic integral procedure. Second, the assumed 
temperature profile representation is limited to at most a 
fourth degree polynomial in 7, since only five independent 
conditions are available for determining the time de- 
pendent polynomial coefficients. These are the two 
boundary conditions, the two relations derived by 
substituting the assumed profile into (2) and evaluating 
the resulting expression at the boundaries, and the heat 
balance integral. Finally, the most serious limitation is 
that generally some of the resulting five relations are 
differential equations, which will not permit the direct 
evaluation of the constants of integration so that auxiliary 
techniques will have to be introduced if the profile is to be 
of higher than second degree. 

The purpose of the present note is to suggest two 
alternative techniques which not only avoid these 
difficulties but also allow a direct method of attack. 

DEVELOPMENT OF “MOMENT” AND 

“SUBDMSION” METHODS 
Assuming the solution of (1) can be expressed by a 

polynomial of the form 

e(7, t) = fi ak(tw 
k=O 

(3) 

n + 1 relations are needed to determine the coefficients 
m(t). Two relations are obtained by expressing the 
boundary conditions at 7 = 0 and n = 1 in terms of 
(3). The n - 1 additional equations required can be 
obtained either by the so-called “moment method” or 
by a “subdivision method”. 

The moment method, which is a standard mathematical 
technique, was discussed by Costello [8] for conduction 
problems with uniform initial conditions and for which 
the concept of a penetration thickness remained applic- 
able. 

Multiplying (1) by a weighting function R(T) and 
integrating the resulting equation between 7 = 0 and 
TJ = 1 yields 

1 1 
d 
z gi(?)% t) dn = ;t gr(7) $dv J J (4) 

0 0 

Substituting (3) into (4) results in 

5 [ jgi(7)7” d7-j.g = skt2[ i WC - llgt(7) 
k=O 0 

7 
T)‘-’ d7 

1 
* ak (5) 

A system of n - 1 linearly independent first order 
ordinary differential equations is obtained by choosing 
n - 1 differentgf(n), (i = 1,2,. . ., n - 1). Theconstants 
of integration resulting from the solution to this system 
are determined by equating n - 1 moments off(n) to the 
corresponding moments of 8(-r), 0) of equation (3), i.e. 

a &(n)f(?) dn = i gi(n)j e~r(O)~b drl (6) 
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The solution will then become unique once the set 
{gi(q)} is specified. Since the temperature distribution is 
assumed to be a polynomial, the selection of gi($ as an 
(i - 1)th degree polynomial appears to be natural. It may 
be easily verified that the solution will indeed be unique 
irrespective of the form of the polynomial gz(v) as long as 
it is- of degree (i - 1). Thus the set {gt($) may be 
selected as la’-rJ. (i = 1 2 9 . . . . . n - 1). for convenience. 

Another ‘systdmatic method. which- kn be used for 
determining the arc’s is the “subdivision method”, which 
was also suggested in reference 8. The slab is divided into 
n - 1 equal subdivisions. Integrating (1) between 7 = X 
and 7 = p yields 

Substituting (3) into (7) leads to 

k=O k=l 

A system of n - 1 linearly independent first order 
ordinary differential equations is obtained by selecting X 
and p of equation (7) so that integration is performed over 
each of the n - 1 subdivisions. The solution to this 
system results in n - 1 constants of integration which 
can be evaluated by equating the integral of f(q) and the 
integral of 0(7,0) from (3) over each of the subdivisions. 
There appears to be little a priori reason for the choice 
of either of the two methods discussed over the other; 
the results of both will approach the exact solution as the 
degree of the polynomial is increased. 

ILLUSTRATIVE EXAMPLES 
Two illustrative examples indicating typical applica- 

tions are discussed below. The first represents a finite 
slab with an initial linear temperature distribution which 
is suddenly insulated at the ends at t > 0 and is shown on 
Fig. 1. This example is representative of a class of 
problems which exhibit a discontinuity at t = 0. Since 
two of the coefficients ab are determined by satisfying the 
boundary conditions at all times, difficulty in matching 
initial conditions is to be expected. It then becomes of 
interest to determine how rapidly the integral solution 
approaches the exact solution, which must be expressed 
by an infinite number of terms. However, for a desired 
degree of accuracy the number of terms required de- 
creases rapidly with time and an early agreement between 
the exact and approximate solutions might be expected. 

Applying the initial conditions and boundary con- 
ditions 

e(% 0) = f(T) = 02.7) @a) 

@b) 

and using a cubic profile leads to a solution by the 
“moment method” of 

e, t> 1 __ = - - 5 exp [-10(a/L2)t] [& - i q2 -I- f q3]. (10) 
ez 2 

Application of the “subdivision method” yields 

eh t) 1 -- =_ 
e2 

2 - exp [-9.6(a/L2)r] [g - y 72 + i 731. (11) 

Figure 1 indicates that equations (10) and (11) compare 
favorably with the exact solution given in reference 9 for 
(c@)t > 0.05. For (a/L2)f closer to zero there will be 
greater error because of failure to satisfy the initial 
condition exactly. 

The second example selected is characteristic of 
problems where the initial temperature distribution 
becomes highly distorted at even very short values of 
time. Here the slab with the initial parabolic temperature 
distribution 

eho) = m = - 4emaxw - d 

is subject to the boundary conditions 

UW 

e(0, t) = e. = em,,(i - exp [-loo(@) (12b) 

e(i, t) = 0 WC) 

Since the selection of a step input boundary condition 
would have led to both rapid profile distortion and to a 
discontinuity at t = 0, the effect of the discontinuity was 
suppressed by the selection of a continuous but rapidly 
varying boundary condition. 

Again assuming a cubic profile the “moment” solution 
is 

p = (1 - exp [-100(a/L2)t])(l - ~7) - 0.591 
mall 

exp [ - 12(u/L2)t](+ - 7) - 
1 

exp [-100(a/~z)t](15~909~ - 

40.909+ i- 25~~) 

and the “subdivision” solution is 

p!J = (1 - exp [-100(a/La)t])(l - 7) - 
Illa* 

0.590 exp [- 12(a/LW(q2 - q) - 
I 

15.392 exp [-4s(a/P& - $? f v3) + 1 (14) 

exp [-~oo(a/~~)t](ll~lOl~ - 26.486+ + 

15.385~~). J 
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The exact solution obtained from [9] is 

@7,t) - = (1 - exp [-100(a/L2)r])(l - ‘I) 
6 mlLx 
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m 
-I- ci 16[1 - (-l)“] __-- 

n3773 
tn exp [-n2a2(a/L2)r] sin (null> 

?%=l 

Do 
+2 

n77 exp [-n2n2(a/L2)t] - (lOO/nv) exp [-100(a/L2)t] 
n2s2 - loo I 

sin (nnr)) 
(13 

0.5 

- Exact 
- 

-- Moment 

FIG. 1. Comparison of exact and integral solutions to example 1. 
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Graphs of equations (13), (14) and (15) are compared The good agreement with the exact solution can also 
in Fig. 2. Though the integral solutions agree qualitatively be noted from an examination of the dominant ex- 
with the exact solution there is considerable error even at 
(a/L2)r = 0.10. Considerable improvement can be ob- 

ponential coefficient which is -9.8751 in the quartic 

tained by increasing the degree of the polynomial to four. 
and -9.8696 in the exact solution. These examples may 
be taken as an indication of the utility and possible 

The “moment” solution then becomes, (also shown on accuracy of the proposed methods. 
Fig. 2) 

:g = (1 - exp [-100(a/L2)t])(l - 7) $ 

exp [-9~8751(a/Lz)t][l~1014~~ -- 2.2028+ -T 0.07769+ + 1.0237~1 

exp [-60(a/Lz)r][-25.0005113 + 37.5007~~ - 12~5002~] + 

exp [-170~1249(a/L2)t][-56~4819~4 + 112.964~~ - 68.6355~2 -; 12.153471 + 

exp [- 100(a/L2)tJ[55~3797$ - 85.7595~~ -t- 27.0570~~ + 3.2278~1 (16) 
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